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Abstract—This paper emphasizes studying on the properties of approximations in rough set and multi-granulation rough set models 
based on maximal compatible classes as primitive ones in which any two objects are mutually compatible, obtains several theorem 
results, proposes and designs the upper and lower approximation computation algorithms in multi-granulation rough set model. It 
verifies the correctness of algorithms by examples and experiments. 
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1    Introduction 
     Rough set theory (RST for short) , put forward Pawlak 
in 1982 ([1]), is an efficient mathematics tool for 
complete information system processing and for 
intelligent system processing characterized by uncertainty, 
vague, uncertainty ([2],[3]). It is now widely applied in 
many research fields such as decision making, pattern 
recognition, knowledge discovery, and so on. Incomplete 
information systems (IIS for short), usually studied by 
constructing non-indiscernibility relation, instead of 
indiscernibility relation, such as tolerance relation 
suggested by M. Kryszkiewicz([4]), similarity relation 
put forward by J.Stefanowski([5]), limited tolerant 
relation proposed by W.Guoying([6]), and so on  ([7],[8]) 
to deal with due to the existence of null or missing 
attribute values. In this way, the rough set model is 
extended and gotten more and more wide and better 
investigated. These days, researchers further suggest 
multi-granulation rough set models from the view point 
of granules and different perspectives. Combining rough 
set model with granule and multi-granulation to study has 
been become a hot topic in the related academic regions. 

Concerning granule view with maximal compatible 
classes as primitive granules based on tolerance relation 
to promote the model to handle IIS([9]), the present paper 
proceeds with some new work about the definitions of 
optimistic and pessimistic lower and upper 
approximations in single attribute subset through this new 
granule view. It introduces the related computation 
methods of finding approximation into multi-granulation 
rough set model (MGRSM) in both optimistic and 
pessimistic cases. It also discusses the properties of them 
and the relationships between single and multiple 
granulation models and between the optimistic and 
pessimistic cases. The main task of it is  to analyze and 
design algorithms for solving lower and upper 
approximations in multi-granulation rough set 
model([10],[11]). It brings even a new expect to produce 
a new approach for transacting multi-granulation RST 
problems in IIS and people may us them to acquire 
determinative and possible decision rules or knowledge 
from massive information system conveniently and 
efficiently in the future. Through proofs, examples and 
experiments, it v erifies that the knowledge acquisition 

approach is validated. So the work done here is of great 
importance. 

2    Definitions 
An IIS is a quadruple ( , , , )S U AT V f= According 

to the definitions in ([4]). ( ) {( , ) :TOL A x y U U= ∈ ×  
, ( ) ( ) ( ) * ( ) *}a a a aa A f x f y f x f y∀ ∈ = ∨ = ∨ = is 

called the tolerance relation derived by A AT⊆ .  
Definition 1.  Let .A AT⊆  ( )C A  is defined as  

2( ) { : max{ ( )}}C A X U X TOL A= ⊆ ⊆   
where max means that the operation is operator ⊆  on a 
series of sets. ( )C A also forms a cover or a knowledge 
expression system on U . 

Definition 2.   Let x U∈ , .A AT⊆  The 
compatible class(es) containing x  is defined as 

       2( ) max{ : , ( )}AC x X x X X TOL A= ∈ ⊆  
where  m ax also means ⊆ . Because the compatible 
class(es) containing x may be not unique for some 
x U∈ , ( )AC x may be a set of compatible classes . 

It can be easily proved that  ( ) ( )x U AC A C x∈= ∪ . 
Definition 3.  The upper and lower approximations for 

X U⊆ in knowledge expression system ( )C A  are 
respectively defined as follows:  

( ) { : ( )( )}oA X x U C C A x C C X= ∈ ∃ ∈ ∈ ∧ ⊆ ;   

( )
o

A X = { : ( )( ( ))}x U C C A x C C X∈ ∃ ∈ ∈ ∧ ∩ ≠∅ . 
The optimistic approximation precision for X U⊆ in 

( )C A  is | ( ) | / | ( ) |
ooA X A X . 

Definition 4.  The pessimist upper and lower 
approximations for X U⊆ in knowledge expression 
system ( )C A  are respectively defined as follows: 

( ) { : ( )( ( ))}pA X x U C C A x C C X= ∈ ∀ ∈ ∈ → ⊆ ; 

( )
p

A X = { : ( )( ( ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠∅ . 
The pessimistic approximation precision for 

X U⊆ in ( )C A  is | ( ) | / | ( ) |
ppA X A X . 

In the literature([10],[11]), Qian et al. proposed a 
multi-granulation rough set model, which includes 
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optimistic multi-granulation rough set and pessimistic 
multi-granulation rough set([12]). Combined with our 
above compatible granules, we can introduce them into 
multi-granulation rough set using knowledge expression 
system ( )C A , we can also obtain related new research 
results. 

Definition 5. Let 1 2, ,..., mA A A AT⊆  be m  

attribute subsets. for , {1,2,..., }X U M m∀ ⊆ = , the 
optimistic multi-granulation lower and upper 
approximations of X with respect to 1 2, ,..., mA A A are 
respectively defined as:  

1
( ) { : ( ( )(

                                    ( )))};

om
i ii

A X x U i M C C A x C

C X
=

= ∈ ∃ ∈ ∃ ∈ ∈

∧ ⊆

∑   

1
( ) { : ( ( )(

                              ( )))}.

o
m

i ii
A X x U i M C C A x C

C X
=

= ∈ ∃ ∈ ∃ ∈ ∈

∧ ∩ ≠∅
∑  

The optimistic multi-granulation boundary region of 
X  is  

1
1 1

( ) ( ) ( ).
m Aii

om mo o
i ii i

Bn X A X A X
∑ =

= =
= −∑ ∑    

The optimistic approximation precision for X U⊆ in 
multi-granulation model with respect to ( )C A  is 

1 1
| ( ) | / | ( ) |

oom m
i ii i

A X A X
= =∑ ∑ . 

Definition 6. The pessimistic multi-granulation lower 
and upper approximations are respectively defined as: 

1
( ) { : ( ( )

                        ( ))};

pm
i ii

A X x U i M C C A

x C C X
=

= ∈ ∀ ∈ ∀ ∈

∈ → ⊆

∑  

  1
( ) { : ( ( )

                        ( ))}.

p
m

i ii
A X x U i M C C A

x C C X
=

= ∈ ∀ ∈ ∀ ∈

∈ → ∩ ≠∅
∑  

The pessimistic multi-granulation boundary region of 
X  is  

1
1 1

( ) ( ) ( ).
m Aii

pm mp p
i ii i

Bn X A X A X
∑ =

= =
= −∑ ∑  

The pessimistic approximation precision for 
X U⊆ in multi-granulation model with respect to ( )C A  

is 
1 1

| ( ) | / | ( ) |
ppm m

i ii i
A X A X

= =∑ ∑ . 

3  Properties and relationships 

Theorem 1.  (i) ( ),( )o
C C A C XA X C∈ ⊆= ∪ ;   

(ii) ( ),( )
o

C C A C XA X C∈ ∩ ≠∅= ∪ . 

PROOF.       (i) y∈ ( ) { : ( )oA X x U C C A= ∈ ∃ ∈  
( )}x C C X∈ ∧ ⊆ ⇒ ( )( )C C A y C C X∃ ∈ ∈ ∧ ⊆  

⇒y∈ ( ),C C A C X C∈ ⊆∪ ,  so ( ),( )o
C C A C XA X C∈ ⊆⊆ ∪ .  

Conversely, For any y∈ ( ),C C A C X C∈ ⊆∪  

 ⇒ ( )( ) C C A C X∃ ∈ ⊆  such that y C∈ .  

So y∈{ : ( )( )} ( )ox U C C A x C C X A X∈ ∃ ∈ ∈ ∧ ⊆ = . 

That is ( ), ( )o
C C A C X C A X∈ ⊆∪ ⊆ .  

Thus ( ),( )o
C C A C XA X C∈ ⊆= ∪ . 

The result of this theorem implies that the definition 
of ( )oA X  can be equivalently defined by 

( ),C C A C X C∈ ⊆∪ . 

(ii) y∈ ( ) { : ( )( )}
o

A X x U C C A x C C X= ∈ ∃ ∈ ∈ ∧ ∩ ≠∅  
⇒ ( )( )C C A y C C X∃ ∈ ∈ ∧ ∩ ≠∅   
⇒y∈ ( ),C C A C X C∈ ∩ ≠∅∪ .  

So ( ),( )
o

C C A C XA X C∈ ∩ ≠∅⊆ ∪ .  

Conversely, y∈ ( ),C C A C X C∈ ∩ ≠∅∪  

⇒ ( )( ) C C A C X∃ ∈ ∩ ≠∅   
such that y C∈ .  

So y∈ { : ( )( )}x U C C A x C C X∈ ∃ ∈ ∈ ∧ ∩ ≠∅  

( )oA X= . That is ( ), ( )
o

C C A C X C A X∈ ∩ ≠∅∪ ⊆ . Thus, 

( ),( )
o

C C A C XA X C∈ ∩ ≠∅= ∪ . 
The result of this theorem implies that the definition 

of ( )
o

A X  can be equivalently defined by 

( ),C C A C X C∈ ∩ ≠∅∪ . 

Theorem 2.  (i) ~ (~ ) ( )
poA X A X= ;   

(ii) ~ (~ ) ( )
ooA X A X⊆ . 

PROOF.  (i) y∈~ (~ )oA X ⇔ y∉ (~ )oA X  
 ⇔ y∉{ : ( )( ~ )}x U C C A x C C X∈ ∃ ∈ ∈ ∧ ⊆ . 

( )( ~ )C C A y C C X¬∃ ∈ ∈ ∧ ⊆  

⇔ ( )( ( ) ~ )C C A y C C X∀ ∈ ¬ ∈ ∨ ⊄  
⇔ ( )( ( ) ( ))C C A y C C X∀ ∈ ¬ ∈ ∨ ∩ ≠∅  

⇔ ( )( )C C A y C C X∀ ∈ ∈ → ∩ ≠∅ . So ~ (~ )oA X  
 { : ( )( )}x U C C A x C C X= ∈ ∀ ∈ ∈ → ∩ ≠∅  

= ( )
p

A X .  

(ii) y∈~ (~ )oA X ⇔ y∉ ( ), ~C C A C X C∈ ⊆∪  

⇔ ( ), ~ ,C C A C X y C∀ ∈ ⊆ ∉  

⇒ y∈ ( ),C C A C X C∈ ∩ ≠∅∪ = ( )
o

A X . So  

~ (~ ) ( )
ooA X A X⊆ .    

Form (ii) of Theorem 3, we can immediately obtain 

that  ~ (~ ) ( )
o oA X A X⊆ . 

Theorem 3.   ~ (~ ) ( )
ppA X A X⊆ . 
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PROOF.  y∈~ (~ )pA X ⇔ y∉ (~ )pA X  
 ⇔ y∉{ : ( )( ( ~ ))}x U C C A x C C X∈ ∀ ∈ ∈ → ⊆ . 
Because  ( )( ( ~ ))C C A y C C X¬∀ ∈ ∈ → ⊆  
⇔ ( ) ( ( ) ~ ))C C A y C C X∃ ∈ ¬ ¬ ∈ ∨ ⊆  
⇔ ( ) ( ( ) ))C C A y C C X∃ ∈ ¬ ¬ ∈ ∨ ∩ =∅  
⇔ ( )( )C C A y C C X∀ ∈ ∈ ∧ ∩ ≠∅   
⇒ ( )( )C C A y C C X∀ ∈ ∈ → ∩ ≠∅ , we have  

~ (~ ) ( )
ppA X A X⊆ .     

Theorem 4.  ~ (~ )
p

A X  = ( )oA X . 

PROOF. y∈~ (~ )
p

A X ⇔ y∉ (~ )
p

A X  
⇔y∉{ : ( )( ( ~ ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠∅ . 
Because ( )( ( ~ ))C C A x C C X¬∀ ∈ ∈ → ∩ ≠∅  
⇔ ( )( ( ) ( ~ ))C C A x C C X¬∀ ∈ ¬ ∈ ∨ ∩ ≠∅  
⇔ ( )(( ) ( ~ ))C C A x C C X∃ ∈ ∈ ∧ ∩ =∅  
⇔ ( )(( ) ( ))C C A x C C X∃ ∈ ∈ ∧ ⊆ .  

So ~ (~ )
p

A X = ( )oA X . 
    The proof of this theorem can also be obtained 

immediately from the (i) of Theorem 3. 

Theorem 5.  (i) 11
( ) ( )

om om
i i ii

A X A X==
= ∪∑ ;    

(ii) 11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ . 

PROOF. (i) y∈
1

( ) { :
om

ii
A X x U i M

=
= ∈ ∃ ∈∑   

( ( )iC C A∃ ∈ ( ( )))}x C C X∈ ∧ ⊆  

 ⇒ ( ( )( ( )))ii M C C A y C C X∃ ∈ ∃ ∈ ∈ ∧ ⊆  

⇒y∈ ( )o
iA X ⇒y∈ ( )o

iA X∪ .   

Conversely, for any y∈ 1 ( )om
i iA X=∪   

⇒ i M∃ ∈ , y∈ ( )o
iA X   

⇒ ( )( ( ))iC C A y C C X∃ ∈ ∈ ∧ ⊆  

⇒ y∈
1

( )
om

ii
A X

=∑ .   

Therefore, 11
( ) ( )

om om
i i ii

A X A X==
= ∪∑ . 

(ii)  y∈
1

( )
o

m
ii

A X
=

=∑  

{ : ( ( )( ( )))}ix U i M C C A x C C X∈ ∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠∅  

⇒ ( ( )( ( )))ii M C C A y C C X∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠∅  

⇒ y∈ ( )
o

iA X ⇒ y∈ 1 ( )
om

i iA X=∪ .  

Conversely, For any y∈ 1 ( )
om

i iA X=∪  

⇒ (i M∃ ∈ y∈ ( ))
o

iA X  

⇔ (i M∃ ∈ ( )( ( ))iC C A x C C X∃ ∈ ∈ ∧ ∩ ≠∅ ) 

⇒ y∈
1

( )
o

m
ii

A X
=∑ .  

Therefore, 11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ . 

Theorem 6.  (i)  
1

~ (~ )
om

ii
A X

=∑ =
1

( )
p

m
ii

A X
=∑ ;  

(ii)  
1 1

~ (~ ) ( )
opm m

i ii i
A X A X

= =
=∑ ∑  

PROOF.  (1)  y∈
1

~ (~ )
om

ii
A X

=∑  

{ : ( ( )( ( ~ )))}iy x U i M C C A x C C X⇔ ∉ ∈ ∃ ∈ ∃ ∈ ∈ ∧ ⊆

{ : ( ( )(iy x U i M C C A x C⇔ ∉ ∈ ∃ ∈ ∃ ∈ ∈  

( )))}C X∧ ∩ =∅ .  

Because  ( ( )( ( )))ii M C C A y C C X¬∃ ∈ ∃ ∈ ∈ ∧ ∩ =∅  

⇔ ( ( )( ))ii M C C A y C C X∀ ∈ ∀ ∈ ∈ → ∩ ≠∅ , 

therefore, 
1

~ (~ )
om

ii
A X

=∑  = 

{ : ( ( )( ))}ix U i M C C A x C C X∈ ∀ ∈ ∀ ∈ ∈ → ∩ ≠∅

=
1

( )
p

m
ii

A X
=∑ . 

(ii) y∈
1

~ (~ )
pm

ii
A X

=∑  

⇔ y∉{ : ( ( )( ~ ))}ix U i M C C A x C C X∈ ∀ ∈ ∀ ∈ ∈ → ⊆ .  

Because ( ( )( ~ ))ii M C C A x C C X¬∀ ∈ ∀ ∈ ∈ → ⊆  

⇔ ( ( )( ( ( ) ( ~ ))))ii M C C A x C C X∃ ∈ ∃ ∈ ¬ ¬ ∈ ∨ ⊆  

⇔ ( ( )(( ) ( ~ )))ii M C C A x C C X∃ ∈ ∃ ∈ ∈ ∧ ⊄  

⇔ ( ( )( ))ii M C C A x C C X∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠∅ . 

 Therefore,  

1
~ (~ ) { : ( ( )

pm
i ii

A X x U i M C C A
=

= ∈ ∃ ∈ ∃ ∈∑  

1
( ))} ( )

o
m

ii
x C C X A X

=
∈ ∧ ∩ ≠ ∅ =∑ . 

Lemma.   (i)  
1

( )
p

m
ii

A X
=∑ =

1
~ (~ )

om
ii

A X
=∑ ; 

(ii)  
1 1

( ) ~ (~ )
opm m

i ii i
A X A X

= =
=∑ ∑ . 
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The two equations in this lemma can be easily 
proved through Theorem 7. 

Theorem 7.  Let S=(U,AT,V,f ) be an incomplete 
information system and Ai ⊆AT(i=1,2,…,m) be m attribute 
subsets. Then for any X⊆U , we have 

   (i) 11
( ) ( )

pm pm
i i ii

A X A X==
= ∩∑ ;    

(ii) 11
( ) ( )

pm p m
i i ii

A X A X==
= ∩∑ . 

PROOF. (i) Because
1

( ) { :
pm

ii
A X x U i M

=
= ∈ ∀ ∈∑  

( ( )( ))}iC C A x C C X∀ ∈ ∈ → ⊆  

⇔{ : ( )( )( 1, 2,..., )}ix U C C A x C C X i m∈ ∀ ∈ ∈ → ⊆ =  

⇔ 1{ : ( )( )}m
i ix U C C A x C C X=∩ ∈ ∀ ∈ ∈ → ⊆  

1 ( )pm
i iA X=⇔ ∩ .  

therefore, this theorem is held. 

(ii) The proof of it is similar to (i). 

 Theorem 8.  Let S=(U,AT,V,f ) be an incomplete 
information system and Ai ⊆AT(i=1,2,…,m) be m attribute 
subsets. Then for any X⊆U , we have 

        (i)  
1 1

( ) ( );
om m o

i ii i
A X X A X

= =
⊆ ⊆∑ ∑  

        (ii)  
1 1

( ) ( ) ,
om m o

i ii i
A A

= =
∅ = ∅ =∅∑ ∑  

1 1
( ) ( ) ;

om m o
i ii i

A U A U U
= =

= =∑ ∑  

        (iii)  
1 1 1

( ( )) ( ),m m mo o o
i i ii i i

A A X A X
= = =

=∑ ∑ ∑  

1 1 1
 ( ( ))  ( );m m mo o o

i i ii i i
A A X A X

= = =
=∑ ∑ ∑  

         (iv) 
1 1

(~ ) ~ ( ),   m mo p
i ii i

A X A X
= =

=∑ ∑  

               
1 1

(~ ) ~ ( )m mo p
i ii i

A X A X
= =

=∑ ∑ . 

Theorem 9.  Let S=(U,AT,V,f ) be an incomplete 
information system and Ai ⊆AT(i=1,2,…,m) be m attribute 
subsets. Then for any X⊆U , we have 

        (i) 
1 1

( ) ( );
pm m p

i ii i
A X X A X

= =
⊆ ⊆∑ ∑  

        (ii) 
1 1

( ) ( ) ,
pm m p

i ii i
A A

= =
∅ = ∅ =∅∑ ∑  

1 1
( ) ( ) ;

pm m p
i ii i

A U A U U
= =

= =∑ ∑  

        (iii) 
1 1 1

( ( )) ( ),m m mp p p
i i ii i i

A A X A X
= = =

=∑ ∑ ∑  

               
1 1 1

 ( ( ))  ( );m m mp p p
i i ii i i

A A X A X
= = =

=∑ ∑ ∑  

         (iv) 
1 1

(~ ) ~ ( ),   m mp o
i ii i

A X A X
= =

=∑ ∑  

                
1 1

(~ ) ~ ( )m mp o
i ii i

A X A X
= =

=∑ ∑ . 

Example 1. An incomplete information system is 

shown in Table 1, where Price, Mileage, Size,  Max-

Speed are conditional attributes, d is a decision attribute. 

For convenience, we use P, M, S, X to represent Price, 

Mileage, Size,  Max-Speed in short in Table 1. Let 

A=AT={P,M,S,X}. We obtain: C(A)={{1},{2,6},{3}, 

{4,5},{5,6}}}.CA(1)={{1}}, CA(2)={{2,6}}, CA(3)={{3}}, 

CA(4)={{4,5}}, CA(5)={{4,5},{5,6}}, CA(6)={{2,6}, 

{5,6}}. Let X=dgood={1,2,4,6}. We get: 

( ) {1,2,6}oA X = , ( ) {1,2,4,5,6}
o

A X = , ( )pA X =  
{ : ( )( ( ))} {1,2}x U C C A x C C X∈ ∀ ∈ ∈ → ⊆ = , 

( )
p

A X =  { : ( )( ( ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠∅  
{1,2,4,5,6}=   

The optimistic approximation precision for X U⊆ in 

( )C A  is | ( ) | / | ( ) |
ooA X A X =3/5=0.5, The 

pessimistic approximation precision for X U⊆ in 

( )C A  is | ( ) | / | ( ) |
ppA X A X =2/5. 

Table 1. An IIS about cars 

Car  P M S X d 
1 high low full low good 
2 low * full low good 
3 * * compact low poor 
4 high * full high good 
5 * * full high excellent 
6 low high full * good 
Example 2.  Still use the incomplete information 

system shown in Table 1. Let 
A1={P,M},A2={S,X},A3={M,X}. 

Then C(A1) ={{1,3,4,5},{2,3,5,6}}, C(A2) ={{1,2,6}, 

{3},{4,5,6}}, C(A3)={{1,2,3},{2,3,6},{4,5,6}}.     

1
( ) ( )

om o
i ii

A X A X
=

= ∪∑ ={1,2,6}, 

11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ ={1,2,3,4,5,6}. 

1
( )

pm
ii

A X
=

=∑  { : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  

))}C X→ ⊆ = 1 ( )pm
i iA X=∩ =∅,   
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1
( )

p
m

ii
A X

=
=∑  { : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  

))}C X→ ∩ ≠∅ 1 ( )
pm

i iA X== ∩ ={1,2,4,5,6}. 

       The optimistic approximation precision for 
X U⊆ in multi-granulation model with respect to ( )C A  

is 
1 1

| ( ) | / | ( ) |
oom m

i ii i
A X A X

= =∑ ∑ =3/6.  The 

pessimistic approximation precision for X U⊆ in multi-
granulation model with respect to ( )C A  is 

1 1
| ( ) | / | ( ) |

ppm m
i ii i

A X A X
= =∑ ∑ =0. 

4  Algorithms for approximations  in
 multi-granulation model  

Using maximal compatible class  ( )iC A  in 

iA ( {1,2,..., })M m= , the algorithm is referred in ([13]) 
as basic granules, we can not hardly design related 
algorithms to compute lower and upper approximations of 
a given subset in optimistic multi-granulation and 
pessimistic multi-granulation rough set models proposed 
in the present paper.  

Let { | 1, 2,..., }iU x i n= = . We use 

sM = ( )( ) ( 1, 2,..., )s
ij n nm s m× = , where ( )s

ijm equals 1, 

if ( , ) ( )i j ix x T A∈ , 0 otherwise, as adjacent  matrix for 
attribute subset Ai and a 2-dimensional binary matrix 

( )s
l nP×  , where ( ) ( , ) 1sP v j =  means that jx  belongs to the 

v-th maximal compatible class, 0 means not, v=1,2,…,l, 
to store all maximal compatible classes, 
where ( * ) / 2l n n<= , but l may be greater than n in some 
cases. So we set l be an enough big positive integer. 
Suppose there are totally k  maximal compatible classes. 
After finishing computation, they are stored in the first k  
rows of  ( )

l n

sP
×

,where k l≤ . 

Let (1) ( 2) ( ), ,..., mP P P  , which are obtained 
according to algorithm A respectively , be respectively the 
maximal compatible class matrices of 

1 2, ,..., mA A A AT⊆ . We can firstly design the 
algorithm to find the optimistic multi-granulation lower 
approximations of X U⊆ . 

Algorithm 1:  Finding the optimistic multi-granulation 

lower approximation of X , i.e.
1

( )
om

ii
A X

=∑  

{ : ( ( )( ( )))}ix U i M C C A x C C X= ∈ ∃ ∈ ∃ ∈ ∈ ∧ ⊆ . 

Input:       ( )iP (i=1,2,…,m): m matrices; Y: a coded 
1 n×  matrix, representing X, Y[i]=1 means xi∈X, 0 means 
not. 

Initialization:  [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:  for ( int i=0; i<m; i++ ) 

for (j=0; j<k; j++) 

{    int tag=1; 
for ( int u=0; u<n; u++ ) 

                                       if (P(i)[j][u]==1&& Y[u]==1)  
continue; 

else{ tag=0; break; } 
if (tag==1)    ( )[ ]iT P j T= ∨ ;     

                              } 
Output:   T , T  is the lower approximations of X  
The time complexity of it is O(mnk). 
Now we design the algorithm to find the optimistic 

multi-granulation upper approximation of X U⊆ . 
Algorithm 2:  Finding the optimistic multi-granulation 

upper approximation of X  , i.e. 
1

( )
o

m
ii

A X
=

=∑  

{ : ( ( )( ( )))}ix U i M C C A x C C X∈ ∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠∅ .  

Input:  ( )iP (i=1,2,…,m): m matrices; Y: a coded 
1 n×  matrix, representing X, Y[i]=1 means xi∈X, 0 means 
not. 

Initialization:  [0,0,...,0]T =  , an 1 n×  matrix; 
Description:  for ( int i=0; i<m; i++ ) 

for (j=0; j<k; j++) 
{    int tag=0; 

for ( int u=0; u<n; u++ ) 
                                       if (P(i)[j][u]==1&& Y[u]==1)  

{  tag=1; 
break ; 

} 
if (tag==1)  ( ) [ ]iT P j T= ∨ ;   

                              } 
Output:  T , T  is the upper approximations of X  
The time complexity of it is O(mnk). 
We then design the algorithm to find the pessimistic 

multi-granulation lower approximation of X U⊆ . 
Algorithm 3: Finding the pessimistic multi-

granulation lower approximations of X  , i.e. 

1
( )

pm
ii

A X
=

=∑  { : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  

))}C X→ ⊆ . But from the (ii) of the lemma in the 

above, we can calculate 
1

( )
pm

ii
A X

=∑  by 

1 1
( ) ~ (~ )

opm m
i ii i

A X A X
= =

=∑ ∑ using Algorithm 2.  

Input:  ( )iP (i=1,2,…,m): m matrices; Y: a coded 
1 n×  matrix, representing X, Y[i]=1 means xi∈X, 0 means 
not. 

Initialization:  [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:   
a)  Let Y  be the reverse code of Y ,that is, Y=~Y; 
b) Getting the optimistic multi-granulation upper 

approximation T  of Y  by calling Algorithm 2; 
d) T=~T; 

Output: T , T is the pessimistic multi-granulation 
lower approximation of X .  

The time complexity of it is O(mnk). 
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Now we finally design the algorithm to find the 
pessimistic multi-granulation upper approximations of 
X U⊆ . 

Algorithm 4:   Finding the pessimistic multi-

granulation upper approximation of X , i.e.  

1
( )

p
m

ii
A X

=
=∑  { : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  

))}C X→ ∩ ≠∅ . But from the (i) of the lemma in the 

above, we can calculate 
1

( )
p

m
ii

A X
=∑  by 

1
( )

p
m

ii
A X

=∑ =
1

~ (~ )
om

ii
A X

=∑  using Algorithm 1. 

Input:       iP  (i=1,2,…,m): m matrices; Y: a coded 
1 n×  matrix, representing X,Y[i]=1 means xi∈X,0,means 
not. 

Initialization:  [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:   
a)  Let Y  be the reverse of Y , that is, Y=~Y; 
b) Getting the optimistic multi-granulation lower 

approximation T  of Y  by calling Algorithm 1; 
d) T=~T; 

Output: T , T is the pessimistic multi-granulation 
upper approximation of X .   

The time complexity of it is O(mnk). 

5    Conclusions 
Using maximal compatible classes as primitive 

granules ([9]), this paper defines ( )C A  as a knowledge 
representing system and the optimistic and pessimistic 
lower and upper approximations based on ( )C A . It 
extends single granulation  rough set model to multi-
granulation model. It studies properties of the two kinds of 
approximations in single granulation  rough set model and 
multi-granulation model, and discusses the relationships of 
the approximations in both models. Using the 
relationships of optimistic and pessimistic lower and upper 
approximation in multi-granulation model and through 
binary vectors and matrices, it designs algorithms to solve 
upper and lower approximations at some advantages. The 
correctness of the algorithms is verified by experiments 
through programming and execution on computers on 
several data sets. It provides a new forming granule view 
to solve multi-granulation problems in multi-granulation 
rough set model in dealing with incomplete information 
systems. This novel granular approach leads to enriching 
study methods confronting with multi-granulation rough 
set models. Our next work will be the rule generations 
through the approximations in multi-granulation model 
with maximal compatible classes as primitive granules. 
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